全部服务

您的位置: 首页 > 疑难问答

标准差的计算公式

发布时间:2024-09-26 16:57:35 | 浏览量:

标准差,在概率统计中最常使用作为统计分布程度上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:

为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子***样品数的标准差之间,有所差别。

简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。

标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值***的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。

标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。

更多相关知识请点击:

组合标准差计算方法

方差分析法是什么

标准差系数是什么

了解更多会计考试资讯、知识点,可以点击查看东奥注册会计师频道。

在线咨询
电话咨询